Search results for "Principle of maximum entropy"
showing 10 items of 12 documents
Arabic Named Entity Recognition: A Feature-Driven Study
2009
The named entity recognition task aims at identifying and classifying named entities within an open-domain text. This task has been garnering significant attention recently as it has been shown to help improve the performance of many natural language processing applications. In this paper, we investigate the impact of using different sets of features in three discriminative machine learning frameworks, namely, support vector machines, maximum entropy and conditional random fields for the task of named entity recognition. Our language of interest is Arabic. We explore lexical, contextual and morphological features and nine data-sets of different genres and annotations. We measure the impact …
Quasi-Newton approach to nonnegative image restorations
2000
Abstract Image restoration, or deblurring, is the process of attempting to correct for degradation in a recorded image. Typically the blurring system is assumed to be linear and spatially invariant, and fast Fourier transform (FFT) based schemes result in efficient computational image restoration methods. However, real images have properties that cannot always be handled by linear methods. In particular, an image consists of positive light intensities, and thus a nonnegativity constraint should be enforced. This constraint and other ways of incorporating a priori information have been suggested in various applications, and can lead to substantial improvements in the reconstructions. Neverth…
Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
2017
Gully erosion is identified as an important sediment source in a range of environments and plays a conclusive role in redistribution of eroded soils on a slope. Hence, addressing spatial occurrence pattern of this phenomenon is very important. Different ensemble models and their single counterparts, mostly data mining methods, have been used for gully erosion susceptibility mapping; however, their calibration and validation procedures need to be thoroughly addressed. The current study presents a series of individual and ensemble data mining methods including artificial neural network (ANN), support vector machine (SVM), maximum entropy (ME), ANN-SVM, ANN-ME, and SVM-ME to map gully erosion …
The multiplex structure of interbank networks
2013
The interbank market has a natural multiplex network representation. We employ a unique database of supervisory reports of Italian banks to the Banca d'Italia that includes all bilateral exposures broken down by maturity and by the secured and unsecured nature of the contract. We find that layers have different topological properties and persistence over time. The presence of a link in a layer is not a good predictor of the presence of the same link in other layers. Maximum entropy models reveal different unexpected substructures, such as network motifs, in different layers. Using the total interbank network or focusing on a specific layer as representative of the other layers provides a po…
Data Mining Technique (Maximum Entropy Model) for Mapping Gully Erosion Susceptibility in the Gorganrood Watershed, Iran
2019
Soil erosion is a serious problem affecting most of the countries. This study was carried out in Gorganrood Watershed (Iran), which extends for 10,197 km2 and is severely affected by gully erosion. A gully headcut inven- tory map consisting of 307 gully headcut points was provided by Google Earth images, field surveys, and national reports. Gully conditioning factors including sig- nificant geo-environmental and morphometric variables were selected as predictors. Maximum entropy (ME) model was exploited to model gully susceptibility, whereas the area under the ROC curve (AUC) and draw- ing receiver operating characteristic (ROC) curves were employed to evaluate the performance of the model.…
Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun
2017
The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies Gorobets, A. Y., Borrero, J. M., & Berdyugina, S. 2016, ApJL, 825, L18 of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight …
Structure Determination by Electron Crystallography Using a Simulation Approach Combined with Maximum Entropy with the Aim of Improving Material Prop…
1997
Solving a crystal structure is only one of the many problems involved in the process of improving material properties. Because it is difficult to obtain large single crystals from most polymeric and many monomeric organic materials, it is essential to develop electron crystallography to make reliable crystal structure analysis possible.
The EM imaging reconstruction method in γ-ray astronomy
1998
Abstract The simpler imaging reconstruction methods used for γ-ray coded mask telescopes are based on correlation methods, very fast and simple-to-use but with limitations in the reconstructed image. To improve these results, other reconstruction methods have been developed, such as the maximum entropy methods or the Iterative Removal Of Sources (IROS). However, such kind of methods are slower and can be impracticable for very complex telescopes. In this paper we present an alternative image reconstruction method, based on an iterative maximum likelihood algorithm called the EM algorithm, easy to implement and that can be successfully used for not very complex coded mask systems, as is the …
Steepest entropy ascent for two-state systems with slowly varying Hamiltonians.
2018
The steepest entropy ascent approach is considered and applied to two-state systems. When the Hamiltonian of the system is time-dependent, the principle of maximum entropy production can still be exploited; arguments to support this fact are given. In the limit of slowly varying Hamiltonians, which allows for the adiabatic approximation for the unitary part of the dynamics, the system exhibits significant robustness to the thermalization process. Specific examples such as a spin in a rotating field and a generic two-state system undergoing an avoided crossing are considered.
The use of maximum entropy statistics combined with simulation methods to determine the structure of 4-dimethylamino-3-cyanobiphenyl
1997
Abstract 4-dimethylamino-3-cyanobiphenyl (4-DMA-3-CB) was characterised with respect to non-linear optical (NLO) properties in the gas phase and in the crystal. The crystal structure was solved from a series of electron diffraction patterns using both molecular modelling and ab initio maximum entropy techniques combined with log-likelihood evaluation. The agreement between the two methods is excellent and the structure evaluation permits an analysis of the major components of the hyperpolarisability tensor in the crystal framework.